Fkbp51基因敲除对小鼠肝脏转录组基因可变剪接的影响
作者:
基金项目:

艾滋病和病毒性肝炎传染病重大专项(2014ZX10004002);国家自然科学基金(81272273)。


Effects of Fkbp51 gene knockout on the alternative splicing of liver transcriptome in mice
Author:
  • ZHOU Zhi-qiang

    ZHOU Zhi-qiang

    Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences(CAMS) & Comparative Medical Center, Peking Union Medical College(PUMC);Key Laboratory of Human Disease Comparative Medicine, Ministry of Health;Key Laboratory of Human Disease Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Zhi-wei

    YANG Zhi-wei

    Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences(CAMS) & Comparative Medical Center, Peking Union Medical College(PUMC);Key Laboratory of Human Disease Comparative Medicine, Ministry of Health;Key Laboratory of Human Disease Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YONG Wei-dong

    YONG Wei-dong

    Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences(CAMS) & Comparative Medical Center, Peking Union Medical College(PUMC);Key Laboratory of Human Disease Comparative Medicine, Ministry of Health;Key Laboratory of Human Disease Animal Models, State Administration of Traditional Chinese Medicine, Beijing 100021, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    目的 通过分析Fkbp51基因敲除(knock out,KO)与野生型(wild type,WT)小鼠肝脏表达谱,研究Fkbp51基因敲除对肝脏组织基因可变剪接的影响。方法 利用二代测序对Fkbp51KO与WT小鼠肝脏进行表达谱测序,用TopHat对RNA测序结果进行可变剪接分析,筛选出KO与WT小鼠肝组织中差异的内含子保留(intron retetion,RI)和外显子跳跃(exon skipping,SE)。通过在线工具DAVID对这些差异可变剪接体进行基因功能(gene ontology, GO)和代谢通路(kyoto encyclopedia of genes and genomes,KEGG)富集分析,同时用NCBI基因数据库对这些基因进行注释。结果 (1)Fkbp51缺失可导致小鼠肝脏mRNA可变剪接发生变化;(2)Fkbp51基因敲除造成小鼠肝脏mRNA可变剪接表达量的变化;(3)通过GO与KEGG分析,我们发现这些发生差异可变剪切的基因主要与脂肪相关衍生物的代谢、免疫、胆汁酸分泌等通路相关。(4)与差异内含子保留相关的基因主要与肌动蛋白细胞骨架调控,氨基酸及其衍生物代谢相关。结论 Fkbp51基因敲除能够改变基因组中mRNA的可变剪切,进而影响小鼠肝脏的代谢功能。

    Abstract:

    Objective The purpose of this study is to understand the influence of Fkbp51 gene knockout on alternative splicing of mRNA in liver tissues. Methods mRNAs of liver from both Fkbp51 knockout(KO) and wild type(WT) mice were isolated. mRNA expression profiling was performed using RNA-seq reads. The mRNA reads produced from RNA-seq was analysed by TopHat for alternative splicing. Exon skipping and intron retetion were identified according to alignment analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analyzed using online tools DAVID. All genes which had differently expressed alternative splicing between WT and KO were annotated using NCBI database. Results (1) Fkbp51 KO can introduce new mRNA alternative splicing; (2) Fkbp51 KO also cause mRNA alternative splicing expression change; (3) According to GO and KEGG analysis, it was found that the mRNA alternative splicing changes mainly enriched in fat metabolism, immune, bile acid secretion, and PPAR signaling pathway etc. (4) The genes which have different intron retetion events are mainly involved in regulation of actin cytoskeleton organization and amino acids metabolism. Conclusions Fkbp51 gene knockout can cause the change of mRNA alternative splicing, and thereby affect the metabolism of liver in mice.

    参考文献
    [1] Zannas AS, Wiechmann T, Gassen NC, et al. Gene-Stress-Epigenetic Regulation of FKBP5:Clinical and Translational Implications[J]. Neuropsychopharmacology,2016, 41(1):261-274.
    [2] Hubler TR, Scammell JG. Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids[J]. Cell Stress Chaperones,2004, 9(3):243-252.
    [3] U M, Shen L, Oshida T, et al. Identification of novel direct transcriptional targets of glucocorticoid receptor[J]. Leukemia,2004, 18(11):1850-1856.
    [4] Paakinaho V, Makkonen H, Jaaskelainen T, et al. Glucocorticoid receptor activates poised FKBP51 locus through long-distance interactions[J]. Mol Endocrinol,2010, 24(3):511-525.
    [5] Stechschulte LA, Hinds TJ, Khuder SS, et al. FKBP51 controls cellular adipogenesis through p38 kinase-mediated phosphorylation of GRalpha and PPARgamma[J]. Mol Endocrinol,2014, 28(8):1265-1275.
    [6] Toneatto J, Guber S, Charo NL, et al. Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation[J]. J Cell Sci,2013, 126(Pt 23):5357-5368.
    [7] 张曼,邱彬,曹勇,等. 共伴侣蛋白FKBP51在高脂诱导肥胖中的作用[J]. 中国比较医学杂志,2015(07):53-58.
    [8] Schutt C, Nothiger R. Structure, function and evolution of sex-determining systems in Dipteran insects[J]. Development,2000, 127(4):667-677.
    [9] Black DL. Mechanisms of alternative pre-messenger RNA splicing[J]. Annu Rev Biochem,2003, 72:291-336.
    [10] Maniatis T, Tasic B. Alternative pre-mRNA splicing and proteome expansion in metazoans[J]. Nature,2002, 418(6894):236-243.
    [11] Carstens RP, Wagner EJ, Garcia-Blanco MA. An intronic splicing silencer causes skipping of the Ⅲb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein[J]. Mol Cell Biol,2000, 20(19):7388-7400.
    [12] Wang HY, Xu X, Ding JH, et al. SC35 plays a role in T cell development and alternative splicing of CD45[J]. Mol Cell,2001, 7(2):331-342.
    [13] Maquat LE. Nonsense-mediated mRNA decay:splicing, translation and mRNP dynamics[J]. Nat Rev Mol Cell Biol,2004, 5(2):89-99.
    [14] Caceres JF, Kornblihtt AR. Alternative splicing:multiple control mechanisms and involvement in human disease[J]. Trends Genet,2002, 18(4):186-193.
    [15] Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes[J]. Nature,2008, 456(7221):470-476.
    [16] Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing[J]. Nat Genet,2008, 40(12):1413-1415.
    [17] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc,2009, 4(1):44-57.
    [18] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic Acids Res,2009, 37(1):1-13.
    [19] Ogata H, Goto S, Sato K, et al. KEGG:Kyoto Encyclopedia of Genes and Genomes[J]. Nucleic Acids Res,1999, 27(1):29-34.
    [20] Skotheim RI, Nees M. Alternative splicing in cancer:noise, functional, or systematic?[J]. Int J Biochem Cell Biol,2007, 39(7-8):1432-1449.
    [21] Moroy T, Heyd F. The impact of alternative splicing in vivo:mouse models show the way[J]. RNA,2007, 13(8):1155-1171.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周志强,杨志伟,雍伟东.Fkbp51基因敲除对小鼠肝脏转录组基因可变剪接的影响[J].中国比较医学杂志,2017,27(5):31~36.

复制
分享
文章指标
  • 点击次数:3446
  • 下载次数: 2635
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-11-15
  • 在线发布日期: 2017-06-01
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭