辛伐他汀对尾悬吊再负重大鼠长骨骨量恢复的影响
作者:
基金项目:

河北省高等学校科学研究计划(QN20131007);河北省自然科学基金(H2013209255)


Effect of simvastatin on bone mass recovery in rats with reloading after tail-suspension
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • | | | |
  • 文章评论
    摘要:

    目的 观察尾悬吊大鼠再负重骨量的变化及辛伐他汀干预对该过程的影响及机制。方法 5月龄大鼠24只分为4组,每组6只:正常对照组(CL组)、尾悬吊6周组(UL组)、尾悬吊3周再负重3周组(UL+RL组)、尾悬吊3周再负重加辛伐他汀干预3周组(10 mg/kg/d,UL+RL+SIM组);实验持续6周,处死大鼠取左侧股骨进行骨密度分析,取左侧胫骨行骨组织形态计量学分析;取右侧股骨经生物力学试验分析最大载荷和弹性模量;取右侧胫骨制备组织匀浆,提取RNA和蛋白,分别采用real-time PCR和western blot检测I型胶原(Col I)的表达。结果(1)骨密度:CL组显著高于其余3组(P<0.05),UL+RL组和UL+RL+SIM组均显著高于UL组(P<0.05);(2)骨组织形态计量学:BV/TV:CL组显著高于其余3组(P<0.05),UL+RL组和UL+RL+SIM组均显著高于UL组(P<0.05);Tb.N:CL组显著高于其余三组(P<0.05);Tb.Th:CL组显著高于UL组(P<0.05);Tb.Sp:CL组显著低于其余三组(P<0.05),UL+RL组和UL+RL+SIM组均显著低于UL组(P<0.05)。(3)生物力学检测结果:CL组最大载荷、弹性模量显著高于其他3组(P<0.05)。(4)Realtime PCR检测结果:各组间ColⅠ的mRNA表达水平无显著差别。(5)Western blot: UL组ColⅠIOD值显著低于CL组(P<0.05),其余组间差异无显著性。结论 大鼠尾悬吊诱发下肢骨量丢失、微结构退变、力学性能下降、I型胶原含量减少,而再负重后上述指标可得到部分恢复,辛伐他汀干预不能促进这一过程。

    Abstract:

    Objective To observe the changes of bone mass in reloaded rats after tail-suspension, and the effect and mechanism of simvastatin on this process. Methods Twenty-four 5-month old rats were divided into 4 groups of 6 animals in each group: Control (CL) group without tail-suspension, unloaded (UL) group with tail-suspension for 6 weeks, other 12 rats received tail-suspension for 3 weeks, then reloaded for subsequent 3 weeks (UL+RL) or combined with simvastatin treatment (UL+RL+SIM) at a dose of 10 mg/kg/d. All rats were sacrificed 6 weeks later, and the left femur was used for examination of bone mineral density, left tibia was used for bone histomorphometry analysis, the right femur and tibia were harvested for biomechanical test, and expression levels of type I collagen by real-time PCR and Western blot, respectively. Results 1. BMD of the CL group was significantly higher than those of the other three groups (P<0.05), and was markedly lower than those in the UL+RL and UL+RL+SIM groups (P<0.05). 2. The bone histomorphometry showed that BV/TV in the CL group was significantly higher than those in the other 3 groups, and the UL+RL and UL+RL+SIM groups showed a significantly higher BV/TV than that of UL group (P<0.05). The Tb.Th was significantly higher in the CL group than in the UL group. The Tb.Sp in the CL group was significantly lower than those in the other 3 groups (P<0.05). The UL+RL and UL+RL+SIM groups showed significantly lower Tb.Sp than that of the UL group (P<0.05). 3. Biomechanical test showed that the maximal load and elastic modulus in the CL groups were significantly higher than those of the other three groups (P<0.05). 4. Real-time PCR showed that no significant difference in the mRNA expression level of Col I was found between any two groups. 5. Western blot showed that the IOD of Col I is significantly lower than that in the CL group. Conclusions Bone loss, destruction of trabecular bone micro-architecture and biomechanical properties and reduction of type 1 collagen are present in tail-suspension treated rats, which are partially restored after reloading, and this recovery process is not enhanced by simvastatin treatment.

    参考文献
    [1] Lau RY, Guo X. A review on current osteoporosis research:with special focus on disuse bone loss[J]. J Osteoporos, 2011, 2011:293808.
    [2] Takata S, Yasui N. Disuse osteoporosis[J]. J Med Invest, 2001, 48(3-4):147-156.
    [3] LeBlanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration space flight[J]. J Musculoskelet Neuronal Interact, 2000, 1(2):157-160.
    [4] Lang TF, Leblanc AD, Evans HJ, et al. Adaptation of the proximal femur to skeletal reloading after long duration spaceflight[J]. J Bone Miner Res, 2006, 21(8):1224-1230.
    [5] Riggs BL, Khosla S, Melton LJ 3rd. A unitary model for involutional osteoporosis:estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men[J]. J Bone Miner Res, 1998, 13(5):763-73.
    [6] Caillot-Augusseau A, Vico L, Heer M, et al. Space flight is associated with rapid decreases of undercarboxylated osteocalcin and increases of markers of bone resorption without changes in their circadian variation:observations in two cosmonauts[J]. Clin Chem, 2000, 46(8 Pt 1):1136-1143.
    [7] Lang T, LeBlanc A, Evans H, et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight[J]. J Bone Miner Res, 2004, 19(6):1006-1012.
    [8] Monteiro LO, Macedo AP, Shimano RC, et al. Effect of treatment with simvastatin on bone microarchitecture of the femoral head in an osteoporosis animal model[J]. Microsc Res Tech, 2016, 79(8):684-690.
    [9] Yang N, Cui Y, Tan J, et al. Local injection of a single dose of simvastatin augments osteoporotic bone mass in ovariectomized rats[J]. J Bone Miner Metab, 2014, 32(3):252-260.
    [10] Tan J, Yang N, Fu X, et al. Single-dose local simvastatin injection improves implant fixation via increased angiogenesis and bone formation in an ovariectomized rat model[J]. Med Sci Monit, 2015, 21:1428-1439.
    [11] Xin M, Yang Y, Zhang D, et al. Attenuation of hind-limb suspension-induced bone loss by curcumin is associated with reduced oxidative stress and increased vitamin D receptor expression[J]. Osteoporos Int, 2015, 26(11):2665-2676.
    [12] Tou JC. Evaluating resveratrol as a therapeutic bone agent:preclinical evidence from rat models of osteoporosis[J]. Ann N Y Acad Sci. 2015, 1348(1):75-85.
    [13] Jing D, Cai J, Wu Y, et al. Moderate-intensity rotating magnetic fields do not affect bone quality and bone remodeling in hindlimb suspended rats[J]. PLoS One, 2014, 9(7):e102956.
    [14] Takata S, Yasui N. Disuse osteoporosis[J]. J Med Invest, 2001, 48(3-4):147-156.
    [15] Basso N, Jia Y, Bellows CG, et al. The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics:studies in hind limb unloaded rats[J]. Bone, 2005, 37(3):370-378.
    [16] Boudignon BM, Bikle DD, Kurimoto P, et al. Insulin-like growth factor I stimulates recovery of bone lost after a period of skeletal unloading[J]. J Appl Physiol (1985), 2007, 103(1):125-131.
    [17] Afzali M, Vatankhah M, Ostad SN. Investigation of simvastatin-induced apoptosis and cell cycle arrest in cancer stem cells of MCF-7[J]. J Cancer Res Ther, 2016, 12(2):725-730.
    [18] Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins[J]. Science, 1999, 286(5446):1946-1949.
    [19] Pagkalos J, Cha JM, Kang Y, et al. Simvastatin induces osteogenic differentiation of murine embryonic stem cells[J]. J Bone Miner Res, 2010, 25(11):2470-2478.
    [20] Chen PY, Sun JS, Tsuang YH, et al. Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway[J]. Nutr Res, 2010, 30(3):191-199.
    [21] Pullisaar H, Reseland JE, Haugen HJ, et al. Simvastatin coating of TiO2 scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2014, 447(1):139-144.
    [22] Uzzan B, Cohen R, Nicolas P, et al. Effects of statins on bone mineral density:a meta-analysis of clinical studies[J]. Bone. 2007, 40(6):1581-1587.
    [23] Moshiri A, Sharifi AM, Oryan A. Role of Simvastatin on fracture healing and osteoporosis:a systematic review on in vivo investigations[J]. Clin Exp Pharmacol Physiol, 2016, 43(7):659-684.
    [24] Oryan A, Kamali A, Moshiri A. Potential mechanisms and applications of statins on osteogenesis:Current modalities, conflicts and future directions[J]. J Control Release, 2015, 215:12-24.
    [25] 张岩, 刘昊, 邢磊, 等.辛伐他汀干预卵巢切除大鼠骨密度和生物力学性能的变化[J]. 中国组织工程研究, 2016, 20(7):981-986.
    [26] 田发明, 张柳, 邢磊. 辛伐他汀部分阻止尾悬吊大鼠股骨近端骨量的丢失[J].中国骨质疏松, 2013, 19(12):1228-1231.
    [27] Corsino A, Bellosta S, Baetta R, et al. New insights into the pharmacodynamic and pharmacokinetic properties of statins[J]. Pharmacol Ther, 1999, 84(3):413-428.
    [28] Reinoso RF, Sanchez Navarro A, Garcia MJ, et al. Preclinical pharmacokinetics of statins[J]. Methods Fin Clin Pharmacol, 2002, 24(9):593-613.
    [29] William D, Feely J. Pharmacokinetic-pharmacodynamic drug interaction with HMG-CoA reductase inhibitors[J]. Clin Pharmacokinet, 2002, 41(5):343-370.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周沛飞,胡东,张岩,刘昊,田发明,邢磊.辛伐他汀对尾悬吊再负重大鼠长骨骨量恢复的影响[J].中国比较医学杂志,2017,27(4):20~25.

复制
分享
文章指标
  • 点击次数:2133
  • 下载次数: 1
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-11-21
  • 在线发布日期: 2017-04-28
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭