复杂性状遗传CC小鼠在传染病领域的应用及研究进展
作者:
基金项目:

十二五科技重大专项(2012ZX10004501-004);国家自然科学基金(31370203);北京市自然科学基金(7142106),协和科技新星培养项目。


Application and Research Progress of Collaborative Cross mice in Infectious Disease Area
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    动物模型是传染病防控研究体系中的重要支撑环节,起到连接实验室基础科研和临床诊疗的桥梁作用。小鼠是目前最被广泛使用的传染病动物模型,然而,免疫系统完整的成熟小鼠很多情况下对某些传染病病原并不易感。近年来,开发临床病例表征与人类更接近的协同杂交(Collaborative Cross, CC)小鼠,又称复杂性状遗传小鼠资源是目前的研究热点和建立疾病动物模型的另一切入口。本文将对目前使用CC小鼠感染传染病病原(包括病毒、细菌、真菌等)后呈现出表型多样性的研究报道做一综述,以期为进一步研究CC小鼠对不同传染病的易感性,丰富我国传染病动物模型资源库,为应对各种重大及新发突发传染病及临床的精细化诊疗提供有价值的参考数据。并在此基础上,提出一系列有关CC小鼠资源目前亟待解决的关键科学技术问题,同时对未来在传染病领域的应用作一展望,以作抛砖引玉之用。

    Abstract:

    Animal model plays an important role in prevention and control of infectious disease, which could link basic research in laboratory with clinical diagnosis and treatment for human patients. Mouse is the most widely used animal model of infectious disease, however, adult immunocompetent mice are resistant to some pathogens. The highly genetically diverse Collaborative Cross (CC) mice could recapitulate many of the genetic characteristics of an outbred population, such as humans. Based on this, this review will focus on the application and research progress of CC mice in infectious disease (including viruses, bacteria, fungi etc.), which could provide useful reference data for expansion of animal model resource bank, and implement of precision medicine of major and new emerging infectious diseases. We hope this review could serve as a modest spur to induce other researchers to come forward with their valuable contributions.

    参考文献
    [1] Zwizwai R.Infectious disease surveillance update[J]. Lancet Infect Dis,2016, 16(4):415.
    [2] Sutton TC,Subbarao K.Development of animal models against emerging coronaviruses:From SARS to MERS coronavirus[J]. Virology,2015,479-480:247-258.
    [3] Bray M.The role of the Type I interferon response in the resistance of mice to filovirus infection[J].J Gen Virol,2001,82(6):1365-1373.
    [4] Churchill GA,Airey DC,Allayee H,et al.The Collaborative Cross,a community resource for the genetic analysis of complex traits[J].Nat Genet,2004,36(11):1133-1137.
    [5] Chesler EJ,Miller DR,Branstetter LR,et al.The Collaborative Cross at Oak Ridge National Laboratory:developing a powerful resource for systems genetics[J]. Mamm Genome,2008,19(6):382-389.
    [6] Threadgill DW,Churchill GA.Ten years of the Collaborative Cross[J].Genetics,2012,190(2):291-294.
    [7] Roberts A,Pardo-Manuel de Villena F,Wang W,et al.The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data:implications for QTL discovery and systems genetics[J]. Mamm Genome,2007,18(6-7):473-481.
    [8] Keane TM,Goodstadt L,Danecek P,et al.Mouse genomic variation and its effect on phenotypes and gene regulation[J].Nature,2011,477(7364):289-294.
    [9] Broman KW.The genomes of recombinant inbred lines[J].Genetics,2005,169(2):1133-1146.
    [10] Rasmussen AL,Okumura A,Ferris MT,et al.Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance[J].Science,2014,346(6212):987-991.
    [11] Ferris MT,Aylor DL,Bottomly D,et al.Modeling host genetic regulation of influenza pathogenesis in the collaborative cross[J].PLoS Pathog,2013,9(2):e1003196.
    [12] Xiong H,Morrison J,Ferris MT,et al.Genomic profiling of collaborative cross founder mice infected with respiratory viruses reveals novel transcripts and infection-related strain-specific gene and isoform expression[J].G3(Bethesda),2014,4(8):1429-1444.
    [13] Kollmus H,Wilk E,Schughart K.Systems biology and systems genetics-novel innovative approaches to study host-pathogen interactions during influenza infection[J].Curr Opin Virol,2014,6:47-54.
    [14] Bottomly D,Ferris MT,Aicher LD,et al.Expression quantitative trait Loci for extreme host response to influenza a in pre-collaborative cross mice[J].G3(Bethesda),2012,2(2):213-221.
    [15] Leist SR,Pilzner C,van den Brand JM,et al.Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CAST/EiJ mice[J].BMC Genomics,2016,17(1):143.
    [16] Gralinski LE,Ferris MT,Aylor DL,et al.Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross[J].PLoS Genet,2015,11(10):e1005504.
    [17] Graham JB,Thomas S,Swarts J,et al.Genetic diversity in the collaborative cross model recapitulates human West Nile virus disease outcomes[J].MBio,2015,6(3):e00493-15.
    [18] Vered K,Durrant C,Mott R,et al.Susceptibility to Klebsiella pneumonaie infection in collaborative cross mice is a complex trait controlled by at least three loci acting at different time points[J].BMC Genomics,2014,15:865.
    [19] Lorè NI,Iraqi FA,Bragonzi A.Host genetic diversity influences the severity of Pseudomonas aeruginosa pneumonia in the Collaborative Cross mice[J]. BMC Genet,2015,16:106.
    [20] Durrant C,Tayem H,Yalcin B,et al.Collaborative Cross mice and their power to map host susceptibility to Aspergillus fumigatus infection[J].Genome Res,2011,21(8):1239-1248.
    [21] Flint J,Mott R.Applying mouse complex-trait resources to behavioural genetics[J].Nature,2008,456(7223):724-727.
    相似文献
    引证文献
引用本文

许黎黎,秦川.复杂性状遗传CC小鼠在传染病领域的应用及研究进展[J].中国比较医学杂志,2016,26(8):20~24.

复制
分享
文章指标
  • 点击次数:2297
  • 下载次数: 1475
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 最后修改日期:2016-07-05
  • 在线发布日期: 2016-08-26
防诈骗提示!请勿点击不明链接或添加个人微信。编辑部所有邮箱后缀均为@cnilas.org
关闭