Diabetic neuropathic pain(DNP)is one of the most common complications in clinical, which influenced patients’ daily functions greatly, without clear mechanisms and effective methods. P2X3 receptors play a pivotal role in the formation, transmission and conduction of pain under neuropathic pain models, associated with peripheral sensory nerve excitability enhancement. This paper focuses on the establishment of DNP models, and the effects of P2X3 receptors in diabetes mellitus.
[1] World Health Organization. Fact sheet N°312.Available from http://www.who.int.Accessed 13 January 2013.
[2] Candrilli SD, Davis KL, Kan HJ, et al. Prevalence and the associated burden of illness of symptoms of diabetic peripheral neuropathy and diabetic retinopathy[J]. J Diabetes Complications, 2007, 21(5): 306-314.
[3] Xu GY, Li G, Liu N, et al. Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats[J]. Mol Pain, 2011, 7: 60.
[4] RaafatK, Aboul-ElaM, El-LakanyA. Alloxan-induced diabetic thermal hyperalgesia, prophylaxis and phytotherapeutic effects of Rheum ribes L. in mouse model[J]. Arch Pharm Res, 2014.
[5] RaafatK, SamyW. Amelioration of Diabetes and Painful Diabetic Neuropathy by Punicagranatum L. Extract and Its Spray Dried BiopolymericDispersions[J]. Evid Based Complement Alternat Med, 2014, 2014:180495.
[6] Jianbo L, Chengya W, Jiawei C, et al. The role of IGF-1 gene expression abnormality in pathogenesis of diabetic peripheral neuropathy[J]. Chin Med Sci J, 2002, 17(4): 204-209.
[8] KangJ, Dai XS, Yu TB, et al. Glycogen accumulation in renal tubules, a key morphological change in the diabetic rat kidney[J]. ActaDiabetol, 2005, 42(2): 110-116.
[9] Lenzen S. The mechanisms of allxan- and strptozotcin-induced diabetes[J]. Diabetologia, 2008, 51: 216-226.
[10] Jafarnejad A, Bathaie SZ, Nakhjavani M, et al. Effect of spermine on lipid profile and HDL functionality in the streptozotocin-induced diabetic rat mode[J]l. Life Sci 2008, 82, 301-307.
[13] Gao F, Zheng ZM. Animal models of diabetic neuropathic pain[J]. Exp Clin Endocrinol Diabetes, 2014, 122(2): 100-106.
[14] Jolivalt CG, Jiang Y, Freshwater JD, et al. Dynorphin A, kappa opioid receptors and the antinociceptive efficacy of asimadoline in streptozotocin-induced diabetic rats[J]. Diabetologia, 2006, 49(11): 2775-2785.
[15] Hernandez-Fonseca JP, Rincon J, Pedreanez A, et al. Structural and ultrastructural analysis of cerebral cortex, cerebellum, and hypothalamus from diabetic rats. Exp Diabetes Res, 2009, 2009: 329632.
[16] Shafrir E. Diabetes in animals: Contribution to the understanding of diabetes by study of its etiopathology in animal models[J]. Diabetes mellitus, 2003, 231-255.
[17] ObrosovaIG, Ilnytska O, Lyzogubov VV, et al. High-fat diet induced neuropathy of pre-diabetes and obesity: effects of "healthy" diet and aldose reductaseinhibition[J]. Diabetes, 2007, 56(10): 2598-1608.
[18] VincentAM, Hayes JM, McLean LL, et al. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1[J]. Diabetes, 2009, 58(10): 2376-2385.
[19] Shafrir E, Ziv E, Mosthaf L. Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models[J]. Ann NY AcadSci, 1999, 892:223-246.
[20] Zhang F, Ye C, Li G, et al. The rat model of type 2 diabetic mellitus and its glycometabolismcharacters[J]. ExpAnim, 2003, 52:401-407.
[21] Islam MS, Choi H.Nongenetic model of type 2 diabetes: a comparative study[J]. Pharmacology, 2007, 79: 243-249.
[22] Dang JK, Wu Y, Cao H, et al. Establishment of a rat model of type II diabetic neuropathic pain[J]. Pain Med, 2014, 15(4): 637-646.
[23] 胡明财, 何建华, 章卓, 等.六昧地黄丸对2型糖尿病大鼠周围神经病变的影响[J]. Chinese Journal of New Drug, 2014, 23(3): 351-354.
[24] Hoke A. Animal models of peripheral neuropathies[J]. Neurotherapeutics, 2012, 9(2): 262-269.
[29] Burnstock G. Acupuncture: a novel hypothesis for the involvement of purinergicsignalling[J]. Med Hypotheses, 2009, 73(4): 470-472.
[30] Tu WZ, Cheng RD, Cheng B, et al. Analgesic effect of electroacupuncture on chronic neuropathic pain mediated by P2X3 receptors in rat dorsal root ganglion neurons[J]. NeurochemInt, 2012, 60(4): 379-386.
[31] Kobayashi K, Fukuoka T, Yamanaka H, et al. Differential expression patterns of mRNAs for P2X receptor subunits in neurochemically characterized dorsal root ganglion neurons in the rat[J]. J. Comp. Neurol, 2005, 481: 377-390.
[32] Aoki Y, Takahashi Y, Ohtori S, et al. Distribution and immunocytochemical characterization of dorsal root ganglion neurons innervating the lumbar intervertebral disc in rats: a review[J]. Life Sci, 2004, 74(21): 2627-2642.
[33] Xiao Z, Ou S, He WJ, et al. Role of midbrain periaqueductal gray P2X3 receptors in electroacupuncture-mediated endogenous pain modulatory systems[J].Brain Res, 2010, 1330:31-44.
[35] Mo G, Peleshok JC, Cao CQ, et al. Control of P2X3 channel function by metabotropic P2Y2 utp receptors in primary sensory neurons[J]. MolPharmacol, 2013, 83(3): 640-647.
[36] North RA, Verkhratsky A.Purinergic transmission in the central nervous system[J]. Pflugers Arch, 2006, 452:479-485.
[37] North RA. The P2X3 subunit: a molecular target in pain therapeutics[J]. CurrOpinInvestig Drugs, 2003, 4:833– 840.
[38] Fabbretti E, D'Arco M, Fabbro A, et al. Delayed upregulation of ATP P2X3 receptors of trigeminal sensory neurons by calcitonin gene-related peptide[J]. J Neurosci, 2006, 26(23): 6163-6171.
[40] Wang S, Dai Y, Kobayashi K, et al. Potentiation of the P2X3 ATP receptor by PAR-2 in rat dorsal root ganglia neurons, through protein kinase-dependent mechanisms, contributes to inflammatory pain[J]. Eur J Neurosci, 2012, 36(3): 2293-2301.
[41] Mo G, Grant R, O'Donnell D, et al. Neuropathic Nav1.3-mediated sensitization to P2X activation is regulated by protein kinase C[J]. Mol Pain, 2011, 7:14.
[42] Engelman HS, MacDermott AB. Presynaptic ionotropic receptors and control of transmitter release[J]. Nat Rev Neurosci, 2004, 5:135-145.
[43] Chen Y, Li GW, Wang C, et al. Mechanisms underlying enhanced P2X receptor-mediated responses in the neuropathic pain state[J]. Pain, 2005, 119: 38–48.
[44] Wang C, Gu Y, Li GW, et al. A critical role of the cAMP sensor Epac in switching protein kinase signalling in prostaglandin E2-induced potentiation of P2X3 receptor currents in inflamed rats[J]. J Physiol, 2007, 584(Pt 1):191-203.
[46] Migita K, Moriyam T, Koguchi M, et al. Modulation of P2X receptors in dorsal root ganglion neurons of streptozotocin-induced diabetic neuropathy[J]. NeurosciLett, 2009, 452:200-203.
[48] Xing J, Lu J, Li J. Purinergic P2X receptors presynaptically increase glutamatergic synaptic transmission in dorsolateral periaqueductal gray[J]. Brain Res, 2008, 1208:46-55.
[49] Shi L, Zhang HH, Hu J, et al.Purinergic P2X receptors and diabetic neuropathic pain[J]. Sheng Li XueBao, 2012, 64(5): 531-542.
[50] Xu GY, Huang LY. Ca2+/calmodulin-dependent protein kinase ii potentiates ATP responses by promoting trafficking of P2X receptors[J]. ProcNatlAcadSci, 2004, 101(32): 11868-11873.